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‡ Dipartimento di Scienze Fisiche, Università di Napoli ‘Federico II’, and INFN, Sezione di
Napoli, Naples, Italy
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Abstract. We give a realization of the quantum affine Lie superalgebrasUq (Â(M−1, N−1)) in
terms of anyons defined on a one- or two-dimensional lattice, the deformation parameterq being
related to the statistical parameterν of the anyons byq = eiπν . The construction uses anyons
contructed from usual fermionic oscillators and deformed bosonic oscillators. As a byproduct,
a realization that is deformed in any sector of the quantum superalgebrasUq (A(M − 1, N − 1))
is obtained.

1. Introduction

Superalgebras, which are the mathematical framework for describing symmetry betwen
bosons and fermions, have by now found several interesting applications in physics, even if
the fundamentalsupersymmetry between elementary constituents of matter has not yet been
supported by experimental evidence. A further enlarged concept of symmetry represented
by quantum algebras has shown up in a large number of areas in physics.The fusion of
these new enlarged symmetry structures is a natural step, and it leads to the so-called
q-superalgebras.

Moreover, the connection between quantum algebras and generalized statistics has been
pointed out in several contexts.Anyonsare typical objects of generalized statistics whose
importance in two-dimensional physics is relevant. They have been used to construct a
Schwinger–Jordan-like realization of the deformed classical finite Lie algebras [7, 6] and of
the deformed affine Lie algebras of the unitary and symplectic series [3, 4]. So it is natural
to ask which kind of oscillators are necessary to build realizations ofq-superalgebras. We
will show that the deformation of the affine unitary superalgebras (and therefore also of
the finite unitary superalgebras) can be realized by means of anyons and of a new type
of generalized statistical object which satisfy braiding relations and which will be called
bosonic anyonsfor reasons which will be clear from their definitions (see section 4).

Let us emphasize that the construction we propose may be interesting in the study
of systems of correlated electrons. In fact the so-calledt–J model [14], which has
been suggested as an appropriate starting point for the theory of the high-temperature
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superconductivity, is supersymmetric for particular values of the coupling constants and
of the chemical potential, the Hamiltonian commuting with asu(1|2). Moreover, in [8] it
was shown that thet–J model at the supersymmetric point can be written in terms of anyons,
which gives a new realization of supersymmetry. Although no deformation appears in this
model, it is conceivable that anyons can be used to describe further deformed generalizations
of this or of similar models, like the Hubbard model [10].

The article is organized as follows. In section 2 we briefly recall the structure of
Â(M − 1, N − 1) in the Cartan–Weyl and Serre–Chevalley bases and then we write its
deformation in the distinguished Serre–Chevalley basis. In section 3 the fermionic-bosonic
oscillators realization of̂A(M − 1, N − 1) is presented and finally in section 4 the anyonic
realization of Uq(Â(M − 1, N − 1)) is given in terms of one-dimensional anyons and
bosonic anyons. In section 5 the generalization of the construction to two-dimensional
anyons is discussed and a few conclusions are presented.

2. Presentation of the superalgebrâA(M − 1,N − 1)

We will recall in this section the presentation of the affine Lie superalgebra
Â(M − 1, N − 1), whereM,N > 1, both in the Cartan–Weyl basis and in the Serre–
Chevalley basis. We setR = M + N − 1 and we exclude the caseR = 1 (obtained when
M = N = 1).

2.1. Cartan–Weyl presentation of̂A(M − 1 ,N − 1)

In the Cartan–Weyl basis, the generators of the affine Lie superalgebraÂ(M − 1, N − 1) are
denoted byhma (Cartan generators) andema (root generators) wherea = 1, . . . , R andm ∈ Z.
The even root system of̂A(M − 1, N − 1) is given by10 = {±(εi − εj ),±(δk − δl)} and
the odd root system by11 = {±(εi − δk)} where 16 i < j 6 M and 16 k < l 6 N , the
εi and δk spanning the dual of the Cartan subalgebra ofgl(M|N). To each root generator
ema one assigns aZ2-grading defined by deg(ema ) = 0 if a ∈ 10 and deg(ema ) = 1 if a ∈ 11.
The generators satisfy the following commutation relations forM 6= N :[
hma , h

n
b

] = γ m δm+n,0K(ha, hb) (2.1a)[
hma , e

n
a

] = aa e
m+n
a (2.1b)

[[
ema , e

n
b

]] =


ε(a, b) em+n

a+b if a + b is a root

aahm+n
a + γ m δm+n,0K(ea, e−a) if b = −a

0 otherwise

(2.1c)

[
hma , γ

] = [
ema , γ

] = 0 (2.1d)

where ε(a, b) = ±1 is the usual 2-cocycle,K is the (non-degenerate) Killing form on
the horizontal superalgebraA(M − 1, N − 1) and γ is the central charge. [[, ]] denotes
the super-commutator: [[ema , e

n
b]] = ema e

n
b − (−1)deg(ema)·deg(enb)enb e

m
a . Note that by virtue of

equations (2.1a)–(2.1d) the value of the central charge ofÂM−1 is opposite to that of̂AN−1.
In the caseM = N , although the Killing form is zero, it is possible to define a non-

degenerate bilinear formK on A(N − 1, N − 1) such that (2.1a)–(2.1d) still hold.
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2.2. Serre–Chevalley presentation ofÂ(M − 1 ,N − 1)

In the Serre–Chevalley basis, the algebra is described in terms of simple root and Cartan
generators, the only data being the entries of the Cartan matrix(aαβ) of the algebra. Let us
denote the generators in the Serre–Chevalley basis byhα and e±α whereα = 0, 1, . . . , R.
If τ is a subset of{0, 1, . . . , R}, the Z2-gradation of the superalgebra is defined by setting
deg(e±α ) = 0 if α /∈ τ and deg(e±α ) = 1 if α ∈ τ . The superalgebra is described by the
(super)commutation relations[

hα, hβ
] = 0 (2.2a)[

hα, e
±
β

] = ±aαβe±β (2.2b)

[[
e+α , e

−
β

]] = e+α e
−
β − (−1)deg(e+α ) deg(e−β ) e−β e

+
α = hα δαβ (2.2c){

e±α , e
±
α

} = 0 if aαα = 0 (2.2d)

and by the following relations:

• the Serre relations for allα 6= β

(ade±α )
1−ãαβ e±β = 0 (2.3)

• supplementary relations forα such thataαα = 0[[
(ade±α−1) e

±
α , (ade±α+1) e

±
α

]] = 0 (2.4)

where the matrixÃ = (ãαβ) is deduced from the Cartan matrixA = (aαβ) of
Â(M − 1, N − 1) by replacing all its positive off-diagonal entries by−1. Here ad denotes
the adjoint action:(adX)Y = XY − (−1)degX·degY YX.

One has to emphasize that for superalgebras, the description given by the Serre
relations (2.3) leads in general to a bigger superalgebra than the superalgebra under
consideration. It is necessary to write supplementary relations involving more than two
generators, that forA(M − 1, N − 1) take the form (2.4), in order to quotient the bigger
superalgebra and recover the original one; see [11] for more details. As one can imagine,
these supplementary conditions appear when one deals with isotropic fermionic simple roots
(that isaαα = 0). Note that these supplementary relations are unnecessary whenM = 1 or
N = 1.

In what follows, we will only use the Serre–Chevalley description of the affine Lie
superalgebra in thedistinguishedbasis, such that the number of odd simple roots is the
smallest one. In the case of̂A(M − 1, N − 1), the distinguished basis is defined by taking
τ = {0,M}. The corresponding Dynkin diagram is as follows, with the labels identifying
the corresponding simple roots:

m m m m m

m

��
��
��
��

HH
HH

HH
HH

�@

�@

1 M −1 M M +1 M +N −1

0
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associated with the Cartan matrix

0 1 0 · · · · · · · · · · · · 0 −1

−1 2 −1 0 0

0 −1
. . .

. . .
. . .

...

... 0
. . .

. . . 0
...

...
. . .

. . .
. . . −1

. . .

0 −1 2 −1
. . .

. . . −1 0 1
. . .

. . . −1 2 −1 0
...

...
. . . −1

. . .
. . .

. . .
...

... 0
. . .

. . . 0

0
. . .

. . .
. . . −1

−1 0 · · · · · · · · · · · · 0 · · · 0 −1 2



. (2.5)

The correspondence between the distinguished Serre–Chevalley and the Cartan–Weyl bases
is as follows (i = 1, . . . ,M − 1 andk = 1, . . . , N − 1):

hi = h0
i e+i = e0

εi−εi+1
e−i = e0

εi+1−εi
hM = h0

M e+M = e0
εM−δ1

e−M = e0
δ1−εM

hM+k = h0
M+k e+M+k = e0

δk−δk+1
e−M+k = e0

δk+1−δk

h0 = −γ +
M∑
i=1

h0
i −

N−1∑
k=1

h0
M+k e+0 = e1

δN−ε1
e−0 = e−1

ε1−δN .

(2.6)

Note that in the Serre–Chevalley picture the central chargeγ is uniquely defined by the
following equation:

h0 = −γ +
M∑
i=1

hi −
N−1∑
k=1

hM+k. (2.7)

2.3. Serre–Chevalley presentation ofUq(Â(M − 1 ,N − 1))

We now consider the universal quantum affine Lie superalgebraUq(Â(M − 1, N − 1)). The
Serre–Chevalley description in the quantum case is very similar. The defining relations take
the form [

hα, hβ
] = 0 (2.8a)[

hα, e
±
β

] = ±aαβe±β (2.8b)

[[
e+α , e

−
β

]] = e+α e
−
β − (−1)deg(e+α ) deg(e−β ) e−β e

+
α = qhαα − q−hα

α

qα − q−1
α

δαβ (2.8c)

{
e±α , e

±
α

} = 0 if aαα = 0 (2.8d)
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whereqα = qdα and the numbersdα symmetrize the Cartan matrix̄aαβ of A(M−1, N−1):
dαāαβ = dβāβα (α, β 6= 0) andd0 = 1 (in the distinguished basis,qα = q for α = 0, . . . ,M
andqα = q−1 for α = M + 1, . . . ,M +N − 1).

In terms of the generatorsE±
α = e±α q

−hα/2
α the usual Serre relations are for allα 6= β

(adq E±
α )

1−ãαβ E±
β = 0 (2.9)

while the supplementary relations forα such thataαα = 0 (the definition of the quantum
adjoint action adq is given below (2.13)) [1, 11, 13] now read[[

(adq E±
α−1) E±

α , (adq E±
α+1) E±

α

]] = 0 (2.10)

or in terms of the generatorse±α[[[
e±α−1, e

±
α

]
q
,
[
e±α , e

±
α+1

]
q

]] = 0 (2.11)

the q-commutator being defined as usual by [X, Y ]q = XY − qYX.
The universal quantum affine Lie superalgebraU ≡ Uq(Â(M − 1, N − 1)) is endowed

with a Hopf algebra structure, with coproduct1 : U → U ⊗ U , counit ε : U → C and
antipodeS : U → U such that (α = 0, 1, . . . , R)

1(hα) = 1 ⊗ hα + hα ⊗ 1 and 1(e±α ) = e±α ⊗ qhα/2α + q−hα/2
α ⊗ e±α (2.12a)

ε(hα) = ε(e±α ) = 0 and ε(1) = 1 (2.12b)

S(hα) = −hα and S(e±α ) = −q±aαα/2
α e±α . (2.12c)

The quantum adjoint action adq can be explicitly written in terms of the coproduct and the
antipode as

(adq X) Y = (−1)degX(2)·degY X(1) Y S(X(2)) (2.13)

using the Sweedler notation for the coproduct:1(X) = X(1) ⊗ X(2) (summation is
understood).

3. Oscillator realization of the affine Lie superalgebraÂ(M − 1,N − 1)

Let us recall now the oscillator realization of̂A(M − 1, N − 1) in terms of creation and
annihilation operators. We consider an infinite number of fermionic oscillatorsci(r), c

†
i (r)

with i = 1, . . . ,M andr ∈ Z + 1
2 = Z′, which satisfy the anticommutation relations{

ci(r), cj (s)
} = {

c
†
i (r), c

†
j (s)

} = 0 and
{
ci(r), c

†
j (s)

} = δij δrs (3.1)

and an infinite number of bosonic oscillatorsdk(r), d
†
k (r) with k = 1, . . . , N and r ∈ Z′,

which satisfy the commutation relations[
dk(r), dl(s)

] = [
d

†
k (r), d

†
l (s)

] = 0 and
[
dk(r), d

†
l (s)

] = δklδrs (3.2)

the two setsci(r), c
†
i (r) anddk(r), d

†
k (r) commuting with each other:[

ci(r), dk(s)
] = [

ci(r), d
†
k (s)

] = [
c
†
i (r), dk(s)

] = [
c
†
i (r), d

†
k (s)

] = 0. (3.3)

The fermionic and bosonic number operators are defined as usual byni(r) = c
†
i (r)ci(r) and

n′
k(r) = d

†
k (r)dk(r).

These oscillators are equipped with a normal ordered product such that

: c†i (r)cj (s) :=
 c

†
i (r)cj (s) if s > 0

−cj (s)c†i (r) if s < 0
(3.4)
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and

: d†
k (r)dl(s) :=

 d
†
k (r)dl(s) if s > 0

dl(s)d
†
k (r) if s < 0.

(3.5)

Therefore

: ni(r) :=
{
ni(r) if r > 0

ni(r)− 1 if r < 0
(3.6)

and

: n′
k(r) :=

{
n′
k(r) if r > 0

n′
k(r)+ 1 if r < 0.

(3.7)

Then an oscillator realization of the generators ofÂ(M − 1, N − 1) in the Cartan–Weyl
basis withγ = 1 is given by

hmi =
∑
r∈Z′

(
: c†i (r)ci(r +m) : − : c†i+1(r)ci+1(r +m) :

)
i = 1, . . . ,M − 1 (3.8a)

hmM =
∑
r∈Z′

(
: c†M(r)cM(r +m) : + : d†

1(r)d1(r +m) :
)

(3.8b)

hmM+k =
∑
r∈Z′

(
: d†

k (r)dk(r +m) : − : d†
k+1(r)dk+1(r +m) :

)
k = 1, . . . , N − 1 (3.8c)

emεi−εj =
∑
r∈Z′

c
†
i (r)cj (r +m) (3.8d)

emδk−δl =
∑
r∈Z′

d
†
k (r)dl(r +m) (3.8e)

emεi−δk =
∑
r∈Z′

c
†
i (r)dk(r +m) (3.8f)

emδk−εi =
∑
r∈Z′

d
†
k (r)ci(r +m). (3.8g)

A fermionic oscillator realization of the simple generators ofÂ(M − 1, N − 1) in the
distinguished Serre–Chevalley basis is given by(α = 0, 1, . . . , R)

hα =
∑
r∈Z′

hα(r) and e±α =
∑
r∈Z′

e±α (r) (3.9)

where (i = 1, . . . ,M − 1 andk = 1, . . . , N − 1)

hi(r) = ni(r)− ni+1(r) = : ni(r) : − : ni+1(r) : (3.10a)

hM(r) = nM(r)+ n′
1(r) = : nM(r) : + : n′

1(r) : (3.10b)

hM+k(r) = n′
k(r)− n′

k+1(r) = : n′
k(r) : − : n′

k+1(r) : (3.10c)

h0(r) = n′
N(r)+ n1(r + 1) = : n′

N(r) : + : n1(r + 1) : − δr+1/2,0 (3.10d)

e+i (r) = c
†
i (r)ci+1(r) e−i (r) = c

†
i+1(r)ci(r) (3.10e)
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e+M(r) = c
†
M(r)d1(r) e−M(r) = d

†
1(r)cM(r) (3.10f)

e+M+k(r) = d
†
k (r)dk+1(r) e−M+k(r) = d

†
k+1(r)dk(r) (3.10g)

e+0 (r) = d
†
N(r)c1(r + 1) e−0 (r) = c

†
1(r + 1)dN(r). (3.10h)

Inserting equation (3.10d) into (3.9) and taking into account that the sum overr can be split
into a sum of two convergent series only after normal ordering, one can check that

h0 = −1 +
∑
r∈Z′

: n′
N(r) : +

∑
r∈Z′

: n1(r) := −1 +
M−1∑
i=1

h0
i + h0

M −
N−1∑
k=1

h0
M+k (3.11)

i.e. the central charge isγ = 1.
Note that the value of the central charge is related to the definition of the normal ordered

product. A different definition like (i = 1, . . . ,M andk = 1, . . . , N)

: ni(r) := ni(r) and :n′
k(r) := n′

k(r) for any r ∈ Z′ (3.12)

would lead toγ = 0.

4. Anyonic realization of Uq(Â(M − 1,N − 1))

In order to obtain an anyonic realization ofUq(Â(M − 1, N − 1)), we will replace the
fermionic and bosonic oscillators by suitable anyons in the expressions of the simple
generators ofUq(Â(M − 1, N − 1)) in the distinguished Serre–Chevalley basis. Since we
have to deal with fermionic and bosonic generators, we have to introduce two different
types of anyons.

Let us first define fermionic anyons on a one-dimensional latticeZ′ [7, 5]:

ai(r) = Ki(r)ci(r) and ãi (r) = K̃i(r)ci(r) (4.1)

and similar expressions for the conjugated operatorsa
†
i (r) and ã†

i (r), where the disorder
factorsKi(r) andK̃i(r) are expressed as

Ki(r) = q− 1
2

∑
t∈Z′ ε(t−r):ni (t): (4.2a)

K̃i(r) = q
1
2

∑
t∈Z′ ε(t−r):ni (t): . (4.2b)

The functionε(t) = |t |/t if t 6= 0 andε(0) = 0 is the sign function.
It is easy to prove that thea-type anyons satisfy the following braiding relations for

r > s:

ai(r)ai(s)+ q−1ai(s)ai(r) = 0

a
†
i (r)a

†
i (s)+ q−1a

†
i (s)a

†
i (r) = 0

a
†
i (r)ai(s)+ q ai(s)a

†
i (r) = 0

ai(r)a
†
i (s)+ q a

†
i (s)ai(r) = 0

(4.3)

and

ai(r)a
†
i (r)+ a

†
i (r)ai(r) = 1

ai(r)
2 = a

†
i (r)

2 = 0.
(4.4)

The braiding relations between theã-type anyons are obtained from equations (4.3) and
(4.4) by replacingq ↔ q−1.
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Finally, the braiding relations betweena-type andã-type anyons are given by{
ãi (r), ai(s)

} = {
ã

†
i (r), a

†
i (s)

} = 0 for all r, s ∈ Z′ (4.5){
ã

†
i (r), ai(s)

} = {
ãi (r), a

†
i (s)

} = 0 for all r 6= s ∈ Z′ (4.6)

and {
ãi (r), a

†
i (r)

} = q
∑

t∈Z′ ε(t−r):ni (t):{
ã

†
i (r), ai(r)

} = q− ∑
t∈Z′ ε(t−r):ni (t):.

(4.7)

Moreover, the following identity holds:

a
†
i (r)ai(r) = ã

†
i (r)ãi(r) = ni(r) (4.8)

the normal ordering betweena-type andã-type anyons being defined as in (3.4).
Now we will define anyonic-like operators based onq-deformed bosons. Let us

recall thatq-deformed bosons can be constructed from ordinary ones by the following
procedure [12]:

n′
k(r) = d

†
k (r)dk(r) (4.9a)

bk(r) = dk(r)

√
[n′
k(r)]q
n′
k(r)

=
√

[n′
k(r)+ 1]q
n′
k(r)+ 1

dk(r) (4.9b)

b
†
k(r) =

√
[n′
k(r)]q
n′
k(r)

d
†
k (r) = d

†
k (r)

√
[n′
k(r)+ 1]q
n′
k(r)+ 1

. (4.9c)

The q-deformed bosonsbk(r), b
†
k(r) satisfy the followingq-commutation relations:

bk(r)b
†
l (s)− qδklδrs b

†
l (s)bk(r) = q−n′

k(r)δklδrs (4.10a)

bk(r)b
†
l (s)− q−δklδrs b†

l (s)bk(r) = qn
′
k(r)δklδrs (4.10b)

bk(r)bl(s)− bl(s)bk(r) = b
†
k(r)b

†
l (s)− b

†
l (s)b

†
k(r) = 0 (4.10c)[

n′
k(r), bl(s)

] = −bk(r)δklδrs (4.10d)[
n′
k(r), b

†
l (s)

] = b
†
k(r)δklδrs (4.10e)

from which it follows that

b
†
k(r)bk(r) = [n′

k(r)]q and bk(r)b
†
k(r) = [n′

k(r)+ 1]q . (4.11)

Now, let us define anyonic-like operators as follows:

Ak(r) = K ′
k(r)bk(r) and Ãk(r) = K̃ ′

k(r)bk(r) (4.12)

and similar expressions for the conjugate operatorsA
†
k(r) and Ã†

k(r), where the disorder
factors are given by

K ′
k(r) = q

1
2

∑
t∈Z′ ε(t−r):n′

k(t): (4.13a)

K̃ ′
k(r) = q− 1

2

∑
t∈Z′ ε(t−r):n′

k(t): . (4.13b)
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It can be proved that the operatorsAk(r), A
†
k(r) satisfy the following braiding relations for

r > s:
Ak(r)Ak(s)− qAk(s)Ak(r) = 0

A
†
k(r)A

†
k(s)− qA

†
k(s)A

†
k(r) = 0

A
†
i (r)Ak(s)− q−1Ak(s)A

†
i (r) = 0

Ak(r)A
†
k(s)− q−1A

†
k(s)Ak(r) = 0

(4.14)

and

Ak(r)A
†
k(r)− qA

†
k(r)Ak(r) = q−n′

k(r)

Ak(r)A
†
k(r)− q−1A

†
k(r)Ak(r) = qn

′
k(r).

(4.15)

Therefore, the operatorsAk(r), A
†
k(r) satisfy theq-commutation relations of theq-deformed

bosonic oscillator at the same point, while they satisfy braiding relations when taken at
different points.

The braiding relations between thẽA-type anyons are obtained from (4.14) by replacing
q ↔ q−1.

Note that for these anyonicq-deformed bosons defined by the above relations, we do
not have any physical interpretations, on the contrary of thea-type anyons, see [7, 5]. Is is
worth to point out that the above introducedbosonic anyonsdiffer from the ones introduced
in [9] by the non-trivial fact that our anyons are defined on a lattice while in [9] are defined
in the continuum and by the local braiding relation (4.15). Replacing theq-boson in (4.12)
by a standard boson, we find in the lattice the bosonic anyons of [9]. We will come back
on the difference between the two approaches in the next section.

Now we can build an anyonic realization ofUq(Â(M − 1, N − 1)) by ‘anyonizing’
the oscillator realization (3.10a)–(3.10h), i.e. replacing the fermionic oscillatorsci by the
anyonic oscillatorsai and ãi and the bosonic oscillatorsbi by the operatorsAi and Ãi .
More precisely, one has:

Theorem 1.An anyonic realization of the simple generators of the quantum affine Lie
superalgebraUq(Â(M − 1, N − 1)) with central chargeγ = 1 is given by (withα =
0, 1, . . . , R)

Hα =
∑
r∈Z′

Hα(r) and E±
α =

∑
r∈Z′

E±
α (r) (4.16)

where (i = 1, . . . ,M − 1 andk = 1, . . . , N − 1)

Hi(r) = ni(r)− ni+1(r) =: ni(r) : − : ni+1(r) : (4.17a)

HM(r) = nM(r)+ n′
1(r) =: nM(r) : + : n′

1(r) : (4.17b)

HM+k(r) = n′
k(r)− n′

k+1(r) =: n′
k(r) : − : n′

k+1(r) : (4.17c)

H0(r) = n′
N(r)+ n1(r + 1) =: n′

N(r) : + : n1(r + 1) : −δr+1/2,0 (4.17d)

E+
i (r) = a

†
i (r)ai+1(r) E−

i (r) = ã
†
i+1(r)ãi(r) (4.17e)

E+
M(r) = a

†
M(r)A1(r) E−

M(r) = Ã
†
1(r)ãM(r) (4.17f)

E+
M+k(r) = A

†
k(r)Ak+1(r) E−

M+k(r) = Ã
†
k+1(r)Ãk(r) (4.17g)

E+
0 (r) = A

†
N(r)a1(r + 1) E−

0 (r) = ã
†
1(r + 1)ÃN(r). (4.17h)



912 L Frappat et al

Proof. We must check that the realization (4.16) and (4.17a)–(4.17h) indeed satisfy the
quantum affine Lie superalgebraUq(Â(M − 1, N − 1)) in the distinguished Serre–Chevalley
basis (2.8a), (2.8d), together with the quantum Serre relations (2.9) and (2.11). The proof
follows the lines of the algebraic case [3]: equations (2.8a)–(2.11) which define a generic
deformed affine superalgebraUq(Â) reduce toUq(A) when the affine dot is removed and
to another finite dimensional superalgebraUq(A′) if the affine dot is kept and one or more
other suitable dots are removed. The relations definingUq(Â) coincide with the union of
those definingUq(A) andUq(A′): therefore, it will be enough to check that the equations
definingUq(A) andUq(A′) are satisfied.

Consider the non-extended Dynkin diagram ofA(M − 1, N − 1) to which
the set of generators{Hα,E±

α } (with α 6= 0) corresponds. Inserting equations
(4.1), (4.2a), (4.2b), (4.11), (4.12), expressions (4.17e)–(4.17g) become

E±
α (r) = ê±α (r) q

1
2

∑
t∈Z′ ε(t−r) :hα(t):

α (4.18)

where the generatorŝe±α (r) are obtained from the generatorse±α (r) in (3.10e)–(3.10g)
replacing the bosonic oscillatorsdk by the q-deformed bosonsbk. The generatorŝe±α (r)
coincide locally, i.e. for fixedr, with the generators ofUq(A(M − 1, N − 1)) of [1, 2] as
the q-deformed fermionsψi of [2] are equivalent to the usual fermionic oscillatorsci . It
follows that the generators{Hα,E±

α } of (4.16) are a representation ofUq(A(M − 1, N − 1)),
since they are obtained with the correct coproduct (see equations (2.12a) and (4.18)) by the
representation in terms of{hα, ê±α }. Let us remark that due to the equivalence betwenq-
fermions and standard fermions the realization of finiteq-superalgebras of [2] are realizations
of deformed algebras only for the subalgebra realized in terms ofq-bosons while the
subalgebra realized in terms ofq-fermions is left undeformed. In contrast, the anyonic
realization presented here is completely deformed in any sector. Finally let us remark that
the differenceq → q−1 in the disorder factor of theA-type anyons (in the siter) with
respect to thea-type anyons (in the same site), see theqα-factor in (4.18), is essential for
the consistency of theq-superalgebra structure.

We consider then theextendedDynkin diagram ofA(M−1, N−1) and we delete a dot
which is not the affine dot. For example, cutting the dot number 2, we obtain the following
Dynkin diagram:

m m m m m m m
1 0 M+N-1 M+1 M M-1 3

�@ �@

which corresponds to the Lie superalgebraA(M − 1, N − 1) in a non-distinguishedbasis.
For a fixedr ∈ Z′, it is possible to show that the set{hj (r), ê±j (r), h1(r+1), ê±1 (r+1)}

(j = 0, 3, . . . ,M + N − 1) is a representation ofUq(A(M − 1, N − 1)) in the non-
distinguished basis specified by the above Dynkin diagram. We emphasize that in this case
we have to satisfy two more supplementary Serre relations than in the distinguished basis.
Of course, for particular values ofM andN one or both relations can be absent. Note that
deleting theMth dot, we recover the superalgebraUq(A(M − 1, N − 1)) in the distinguished
basis. Then it follows that the generators{Hα,E±

α } with α 6= 2 are a representation of
Uq(A(M − 1, N − 1)), as they are obtained by the generators of a representation of the
finite q-superalgebra with the correct coproduct. This completes the proof. �

5. General representations and conclusions

In the previous section, we have built a representation of the deformed affine Lie
superalgebrasUq(Â(M − 1, N − 1)) by means of anyons defined on an infinite linear chain;
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as the corresponding fermionic representation, it has central chargeγ = 1. Representations
with vanishing central charge could be built in the same way by using alternative normal
ordering prescriptions (3.12).

Representations withγ = 0 andγ = 1 can be combined together to get representations
with arbitrary positive integer central charges (we do not discuss here the problem of the
irreducibility of these representations). Associating a representation with any horizontal line
of a two-dimensional square lattice, infinite in one direction (say the horizontal one), and
takingK copies of representations in a one-dimensional lattice with central charge equal
to 1, one can obtain representations with the value of the central charge equal toK. Note
that by combining one representation with central charge equal toK with a finite number
of representations (in one-dimensional lattice) with vanishing value of the central charge
one obtains an inequivalent representation with the same value of the central charge. The
extension to a two-dimensional lattice infinite in both directions can also be done, but it
requires some care in the definition in order to avoid convergence problems.

We have shown in [3] that the use ofa-anyons on a two-dimensional lattice naturally
gives the correct coproduct with the correct powers of the deformation of the representations
of a q-algebra defined in a fixed site of the lattice. For completeness we recall that each
site of the two-dimensional lattice is labelled by a vectorx = (x1, x2), the first component
x1 ∈ Z′ being the coordinate of a site on the linex2 ∈ Z. The angle2(x,y) which enters
into the definition of two-dimensionala-anyons through the disorder factor (see, e.g., [5])

K(x) = exp

(
iν

∑
y 6=x

2(x,y) n(y)

)
(5.1)

may be chosen in such a way that

2(x,y) =
{ +π/2 if x2 > y2

−π/2 if x2 < y2

(5.2)

while if x andy lie on the same horizontal line, i.e.x2 = y2, the definitions of section 4 hold.
Two-dimensional anyons still satisfy the braiding and anticommutation relations expressed
in general form in (4.3)–(4.7). Analogous relations hold for theA-anyons.

Let us replace the one-dimensional anyons in the equations of section 4 with two-
dimensional ones and sum over the sites of the two-dimensional lattice. This sum has
to be read as a sum over the infinite linex1 and a sum over the finite number of lines
labelled byx2. Then the generators are given by a sum, with the correct coproduct, of
the generators of aUq(Â(M − 1, N − 1)) representations defined in a line. Therefore they
define aUq(Â(M − 1, N − 1)) representation with value of the central charge given by the
sum of the values (0 or 1, see the discussion in section 4) of the central charges associated
with each line of the two-dimensional lattice.

In the previous sections we have discussed the case of|q| = 1. The case ofq real can
also be discussed and we refer the reader to [7] for the definition of anyons for genericq.

One can naturally ask if the realization in terms ofa-anyons andA-anyons presented
here can be used to realize the deformation of other finite or affine superalgebras. It
seems that this procedure can be extended to the other basic finite superalgebras, i.e. the
seriesB(0, N), B(M,N), C(N + 1), D(M,N), while it is not clear whether it can be
extended to the exceptional or strange finite superalgebras or to the affine case. Finally,
we want briefly to comment on the difference between our approach and that used in [9],
even if here we present the realization of aq-superalgebra and in [9] a realization of a
q-algebra was presented. The approach of [9] is made on the continuum and, as already
remarked, the authors do not useq-bosons as in the present paper, but standard bosons
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before ‘anyonization’. However, one has to stress that their approach is based on a Fock
space realization which guarantees the consistency of the commutation relations. It is worth
noting that on the Fock space the fundamental representation of the deformed algebra is
indistinguishable from the fundamental representation of the undeformed algebra. It follows
that a sum with the correct product of the fundamental representation gives a representation
of the deformed algebra. In contrast, as we fulfill the commutation relations in abstract
way, we are not allowed to consider only the fundamental representation of the deformed
algebra realized by bosons, and in order to achieve the consistency of the representation we
are lead to useq-bosons.
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